

Analysis of Ground Support Equipment (GSE) Failure Modes at PT. Gapura Angkasa Makassar

A. Ferina Herbourina Bonita¹, Lalu Muhammad Saleh², Masyita Muis³

Postgraduate Student, Department of Public Health, Faculty of Public Health, Hasanuddin University, Indonesia¹

Department of Occupational Health and Safety, Faculty of Public Health, Hasanuddin University, Indonesia²

Keywords: GSE, FMEA, RPN, BTT, BCL

ABSTRACT

This research aimed to identify and detect each existing failure mode based on probability and severity and provide solutions using the Failure Mode and Effect Analysis (FMEA) method. A company known as PT. Gapura Angkasa in Sultan Hasanuddin Airport was used, which has hundreds of workers in the Ground Support Equipment (GSE) Division, and its operation is fraught with danger and risk. This research identified the cause of the GSE damage, ensuring the safety of workers and the smooth operation of the aircraft and passengers. A qualitative approach was used to examine the condition of the equipment, with the researcher serving as the primary instrument. To obtain information about the failure modes of the GSE at PT. Gapura Angkasa Makassar, the FMEA method was used. This was carried out by determining the risk rating, which is represented by the Risk Priority Number (RPN). The results showed that there were two types of GSE damage, namely BTT and BCL. The engine indicator component in the BTT and the steering column in the BCL had the highest damage, with RPN of 240 and 160, respectively. Routine maintenance is recommended on components with a high probability value to improve their reliability, while special attention should be paid to components with a high RPN level.

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0 International License.

1. Introduction

The presence of hazards and the emergence of work-related risks cannot be separated from Industrial development in various fields [1]. Sources of accident risk include human factors (work behavior), work environment factors, equipment, material factors, and work method. The Fault Mode and Effect Analysis (FMEA) was used to identify and detect failure modes based on probability, severity, and detection ease and provide solutions [2]. Inductive analysis identifies the cause of the damage and determines how it can exist or occur. In addition, the FMEA describes the damage, the cause, and its effects on the system. It can also be used for product design details, such as identifying and eliminating the flaws in a product [3].

FMEA is a systematic method that identifies and implements solutions for problem prevention in processes

and products. It is divided into design and process and focuses on prevention, improving workers' safety, and increasing customer satisfaction [3]. Failure mode occurs when a product fails during the manufacturing process. Each failure mode has potential causes and effects arising from the failure and each has its risks. Furthermore, FMEA is a method for identifying failures, effects, and risks of processes or products and solutions that reduce the failures [4].

PT. Gapura Angkasa Makassar has hundreds of workers, including 44 operators in the Ground Support Equipment (GSE) Division, each of whom is responsible for a GSE [6]. Based on the processes used during operation, hazards and risks which may cause damage to equipment used to operate aircraft services are inevitable [7]. Secondary data from the PT. Gapura Angkasa Makassar in 2020-2021 showed that the GSE Division has the greatest risk due to unsafe actions and conditions. According to the 2020 and 2021 accident data, work accidents continue to occur, with the highest number occurring during the GSE operation and fluctuating the most when compared to other work processes. In the 2020 to 2021 damage data, 98 out of the 265 damaged tools were caused by various factors ranging from the age of the equipment to lack of compliance with the Standard Operating Procedures (SOP).

Companies need to maintain the GSE with ground support equipment service before handling placement operations, loading and unloading, and during and after carrying out operations [8]. A reduction in the quality of the equipment will result in a decrease in production and lead to losses in the company [9]. In addition, GSE damage can hinder work productivity and result in losses due to maintenance costs, repairs, and purchasing new equipment. Frequent damage also hampers productivity to the point of causing economic instability for the company due to poor services that reduce customer satisfaction.

2. Method and Material

A qualitative approach was used to examine the conditions of the equipment, with the researcher serving as the primary instrument [5]. FMEA was used to obtain information about failure modes on GSE at PT. Gapura Angkasa Makassar using the results of observations through unsafe acts and conditions by determining the risk rating, which is represented by the Risk Priority Number (RPN). This research was conducted from September to October 2022. Research informants are subjects who understand the research and provide information about GSE failure modes at the company. The snowball sampling technique was conducted by triangulation to retrieve informants, where the researcher was the primary instrument, and the sampling of data sources was carried out purposively [10]. Furthermore, inductive or qualitative data analysis was used in this qualitative research to emphasize meaning rather than generalizing results [11].

Data processing was performed using SPSS and AMOS applications to see direct and indirect effects through the intervening variables using path analysis. The results of the study will be presented in the form of tables and narratives. This study has received approval from the health research ethics commission (KEPK) Faculty of Public Health, Hasanuddin University with protocol number: 29822062187 and letter number: 10245/UN4.14.1/TP.01.02/2022.

3. Results

From the interview results and the existing failure modes, several types of damage were found in the GSE, with two having the highest frequency of damage. These include Baggage Towing Tractors (BTT) and Belt Conveyor Loaders (BCL). Furthermore, there were several causes of failure in these equipments, including component, construction, and electrical failures.

Table 1. The Failure Modes of the Baggage Towing Tractor (BTT) at PT. Gapura Angkasa Makassar

ISSN: 0005-2523 Volume 63, Issue 01, January, 2023

Failure Mode	Effort of Failure	Failure	Current Control		Failure Effect		Failure	Com
	Effect of Failure	Cause		Local Effect	Next Higher Efect	End Effect	Detection	Corre
ailure in onstruction, fanpower jured	Perforated and thin construction hence the operator can fall	Broken, Perforated (leaking), worn tires	Inspection of frames and tires before use, manpower uses PPE according to SOP	Distractions when operating, hence manpower can slip and fall	Performance is reduced, and fingers can be broken due to being pinched and injured	BTT cannot be used and manpower may be harmed by a damaged component	There are rust, cracks, corrosion on the frame, thin, punctured, and worn tires	Perform mainten frames, toolbox before w
ailure in onstruction, (anpower jured	Perforated construction hence the operator can be bumped into objects	Broken, Perforated (leaking), and torn	Checking door and hinge construction and ensuring manpower is using PPE according to SOP	There is an impact on the components of the front cover, hence manpower can be hit and squashed	Disturbances in operation and manpower may be impacted by exposed components	Effects on other components, and manpower can get injuries from the head to the eye	There are rust, cracks, and corrosion on the frame	Replace construct conduction meeting begins
omponent ilure, anpower hurt	Whentheinstrumentdoesnotwork,theoperatormaycrashintosomething	Broken, Perforated (leaking), and dented components	Checking components before the operation, manpower uses PPE according to SOP	Component performance is reduced, hence, manpower can be injured	Interference, when manpower is operated, can cause minor injuries such as collisions	System malfunctions can cause head abrasions and bruises	Components do not work, and rusty	Mainten replacen parts, toolbox before w
ailure on the iver's seat, anpower jured	The drive set cannot be used and the operator may be crushed by the part	Broken, Ripped	Checking components before use, manpower uses PPE according to SOP	Interference when in operation, indicating that the driver's seat is not ergonomic	Component performance is reduced and the body of manpower can be dislocated	Breakage on the driver's seat hence manpower can be affected by LBP to MSDS	Tears, wear on the seat frame	Replace driver's replacen conduct meeting begins
ailure of the iling guard, anpower may e splashed with ud and other bstances	Injure the manpower, causing the skin of the manpower to become infected	Broken, dented hollow components	Checking the railing guard before using the tool, manpower uses PPE according to SOP	Interference when in operation hence the manpower can be hit and crushed.	The gear guard and accessory may come loose and injure the manpower	Injure man power hence it can get abrasions and bruises	Broken, cracked, or broken accessory	Replace compon- conduct meeting begins
ailure in onstruction and anpower may ll	Broken/non- functioning to the point of injuring the manpower	Broken and porous, causing damage to the tool when damaged when the damage is fatal	Checking indicators before using the tool, manpower uses PPE according to SOP	Performance is reduced, thereby endangering road users and disrupting traffic	Disturbances in operation may lead to injuries and falling of man power	There are porous parts, causing fatal damage to the tool, manpower can be seriously injured, sprained, and pinched	Fractures or corrosion in the construction	Replace compon drones complet use of w
ailure in onstruction and anpower can be ushed by the bin	manpower can become hurt	Broken, Perforated (leaking)	Inspection of component construction, manpower using PPE according to SOP	Interference during operation, causing manpower to be crushed by the cabin	The effect on other components, manpower, fell from above and was crushed by the cabin body	Front glass detached/broken, causing injuries to the head and body of manpower.	Rust, corrosion, or cracks in the cabin	Replace hollow parts, us carry ou
ailure of the otective glass ad manpower ay hit the indshield	It can hurt manpower	Break, Crack	Inspecting the front glass before use, manpower using PPE according to SOP	Interference when in operation, manpower can be injured	Performance is reduced, manpower is hit by splashes of windshield shards	It can get into the skin and eyes and cause Injuries.	Broken, mossy glass	Glass replacen conducti meeting begins
omponent ilure and the oor may open ddenly	The door lock does not work, endangering manpower	Broken, not working	Lubricating and inspecting door locks, manpower using PPE according to SOP	Interference during operation and manpower may fall out	The door lock does not work/was stiff, and can cause the manpower to slip, fall, and get injured	Door lock does not work, manpower can be fatally injured	Stiff, not working	Lubricat lock conduct meeting begins
ailure in ectrical omponents, orkers do not neck cables	Troubleshooting that endangers manpower	Wiring and clamp broken	Component inspection to avoid troubleshooting, manpower uses PPE according to SOP	Performance is reduced, manpower may be exposed to the cable	Wiring break/troubleshooting, causing sparks that endanger manpower	The components cannot be used, therefore, manpower is electrocuted and burnt	Broken cable, broken clamp	Replace and conducti meeting begins
ailure of omponents, orkers	Troubleshooting and endangering manpower when the lamp is broken	Broken, Troubleshooti ng	Component inspection to avoid troubleshooting, manpower uses PPE according to SOP	Performance is reduced and manpower cannot see the light code while operating	The lights do not work, manpower falls and hits an object	Interfering with BTT operation, manpower gets injured and falls down	The light does not turn on	Electrica replacen toolbox before w
ailure of the iling guard	There is no safety on the lamp, endangering manpower when the lamp is broken	Broken, Cracked	Inspecting the railing guard before using the tool, manpower uses PPE according to SOP	Broken bracket, manpower cannot see the lights while operating because the light bracket is broken	The lamp may break	Disturbances when operated, manpower can get injured and fall	Broken	Replace damaged toolbox before w
ailure of omponents and	Meters and switches do not	Broken, Troubleshooti	Check meter and switch before use	Reduced performance,	Disturbances when operating, the machine	BTT could not be operated and	The component indicator is not	Periodic replacen

anpower is	work, endangering	ng		exposed cables, and	shuts down suddenly	manpower was	working	parts,
tposed to	man power			damaged meter	and traffic	electrocuted and hit		meeting
ectricity				indicator	disturbances,	by another device		begins
					manpower is			
	D 1 1 1	D 1		D 1 1	electrocuted			D ' 1'
ailure of	Engine indicator	Broken,	Check the indicators	Reduced	Machine indicator	BTT could not be	The component	Periodic
omponents and	does not work,	Troubleshooti	on the tool	performance,	items cannot be	operated, manpower	indicator is not	replacen
anpower is	endangering	ng		exposed cables, and	detected, sudden and	was electrocuted and	working	parts,
tposed to	manpower			damaged meter	traffic disturbance,	was hit by another		meeting
ectricity				indicator	manpower can be	device		begins
					electrocuted			
ailure in	The wiper motor	Component	Check the wiper	The wipers are not	Disturbances during	The system is not	The wipers stiff	Wipers
omponents,	and blade not	not working	motor as well as the	working optimally,	operation, tools get hit	working, manpower	and not moving	replacen
using lower	working,		blade before operating	the glass is foggy and	and manpower gets hit	is injured		rubber,
sibility for	endangering			makes tool operation				meeting
anpower	manpower			errors				begins
omponent	Overheat, injury to	Porous, Stuck	Check and clean the	Performance is	Overheat engine, leads	Injuries and causes	Engine	Cleaning
ilure, high	manpower		air conditioner before	reduced,	to shortness of breath	lack of oxygen and	Overheating	conditio
ibin pressure			use	compromising		heat pressure to	and temperature	installat
				manpower		manpower in the	increases	meeting
						cabin		begins
omponent	Defroster not	Broken,	Component inspection	The defroster does	Operation is disrupted,	The system does not	Using a Frosted	Replace
ilure	working,	Troubleshooti	to prevent	not function	tools get hit and	work	glass surface	parts,
	endangering	ng	troubleshooting	optimally, the glass is	manpower gets hit			meeting
	manpower			cloudy due to				begins
				condensation and				
				causes tool operation				
				errors				

Table 2. Risk Priority Number (RPN) of the Baggage Towing Tractor (BTT) Ground Support Equipment

No	Component Name	Severity (S)	Occurrence (O)	Detection (D)	R P N (SxOxD)	Risk Level	Ranking
1	Frame and Tire	4	4	2	32	Low	9
2	Door and Hinge	2	4	3	24	Low	13
3	Instrument Panel and Floor	2	4	1	8	Very Low	16
4	Driver Seat	1	4	1	4	Very Low	17
5	Head Guard and Accessory	3	7	3	63	Low	6
6	Indicator Plate	8	6	4	192	High	2
7	Steel Cabin	2	8	2	32	Low	10
8	Front Glass	3	5	1	15	Low	15
9	Door Lock	4	4	1	16	Low	14
10	Wiring and Clamp	4	8	1	32	Low	11
11	Lamp	6	7	4	168	High	4
12	Lamp Bracket	5	5	3	75	Low	5
13	Meter and Switch	5	5	2	50	Low	8
14	Indicator Engine	8	6	5	240	Very High	1
15	Wiper Motor and Blade	2	5	3	30	Low	12
16	Air Conditioner	7	6	4	168	High	3
17	Defroster	3	7	3	63	Low	7

(GSE) at PT. Gapura Angkasa Makassar Service

Source: Primary Data, 2022.

Table 3. Failure Modes of the Belt Conveyor Loader (BCL) at the PT. Gapura Angkasa Makassar

ISSN: 0005-2523 Volume 63, Issue 01, January, 2023

Failure		Failure			Failure Effect		Failure	
Fallure Mode	Effect of Failure	Fallure Cause	Current Control	Local Effect	Next Higher Effect	End Effect	Detection	Correct
Component ailure, nanpower njured	Components become worn out and unusable, causing operators to fall and tip over	Corrosion, broken, perforated (leaking) tires until they wear out	Checking components before using the tool, manpower uses PPE according to SOP	Interference when operated, causing manpower to slip and fall	manpower fingers due to	CBL could not be operated, manpower was hit by a damaged component that dislodged it	There is rust, tear or wear	Perform maintena conduct meetings beginnin
Failure in he electrical ystem, nanpower s injured by electricity	Troubleshooting may result in an electric shock to the operator	Human error/age	Checking the assembly before operation, Use of PPE according to SOP	Interruptions in operation, can expose cables and damage the electrical system	Short circuit exposes workers to high- voltage currents,	Fire can cause burns	Faulty electrical appliance	Maintena ement conduct meetings work beg
Failure of the steering components causing the nanpower o injure his nand	Stiff/non- functional steering may cause the operator to sprain his hand	Corroded/b roken	Checksareconductedbeforecomponentsareused,manpowerusesPPEaccording toSOP	Performance is reduced, manpower can bump and crush on components	Stiff when operated on, which can result in minor injuries such as sprains	CBL cannot be operated and causes manpowerabrasions and bruises	Stiff steering	Perform maintena conduct meetings work beg
Failure of components manpower s injured and exposed o components	Broken/not working, hence the operator is hit by a component	Corroded, broken, perforated, and leaking	Cabin inspection before CBL is enabled, manpower uses PPE according to SOP	Disturbances during operation, hence, manpower can collide and be crushed by the body of the cabin	The left/right indicator lights do not work causing manpower to fall and hit something	The side cabin is detached/broken and manpower is injured in the head and body, hence, it fell down	Rusting in constructi on	Carry maintena replacem drones the com the use of
Failure of he he ydraulic ystem, nanpower s injured nd can be trushed by components	The belt system does not work, causing the operator to hit objects	Broken/no power	Hydraulic oil dampers are provided, manpower uses PPE according to SOP	The hydraulic system is inefficient, manpower can be crushed by luggage	-	The system malfunctions and injures manpower, leading to head abrasions, bruises, and body injuries that render them unconsciousness	Oil seepage on the piston	Perform maintena conduct meetings work beg
Failure on he front ifting causes njury to nanpower who can be trushed by components	Front lifting does not work, hence, the operator may hit objects	Broken/not working	Check the bracket before using the tool, manpower uses PPE according to the SOP	The lifting system does not work, it can be crushed by the baggage that is in operation	construction is broken, hence, manpower can	The belt assembly does not work, resulting in head abrasions, bruises, and body injuries, leading to unconsciousness	There is rust on the pole	Periodic the use o inspect complete use of we
Failure in ear lifting, nanpower s injured and can be crushed by components	Rear lifting does not work, hence the operator may hit objects	Broken/not working	Inspecting rear lifting used, manpower using PPE according to SOP	The lifting system does not work, it can be crushed by the baggage that is in operation	construction is	resulting in head	There is rust on the pole	Periodic the use o inspect complete use of we

Failure of nti-slip, nanpower vas injured by falling, overturning, nd hit	The slip sticker does not work, hence the operator can slip on the component	Torn/worn out	Examination of the sticker used and ensuring the use of PPE by manpower according to SOP	Non-slip, hence, the operator can fall due to slipping feet	A slippery floor can cause minor injuries such as sprains	•	Wear and tear on the slip sticker	Make replacem conduct meetings work beg
Belt failure, nanpower s injured ind may be trushed	The belt loader does not work, causing the operator to collide with objects	Cracks/ corrosion	Inspecting the belt used and ensuring that manpower uses PPE according to SOP	Reduced performance and falls could occur from overcharged objects	can break, and the manpower could fall from	manpower can cause head	The belt loader is not efficient	Periodic maintena drones to the comp using PP at height
						baggage distribution process		
⁷ ailure in nanufacturi 1g, nanpower njured	Perforated construction, hence operator can be squashed and burnt by components	Cracks/ corrosion	Inspecting components before use and ensuring that manpower uses PPE according to SOP	Impact of the components of the front cover, eye irritation due to gas components	Disruption in operation, manpower fingers can be broken, pinched and injured, and eye damage	Injures manpower, the eyes become sore and can interfere withvision	Corrosion on the surface of the cover	Maintena ement conduct meetings work beg

Source: Primary Data, 2022.

Table 4. Risk Priority Number (RPN) of the Belt Conveyor Loader (BCL) Ground Support Equipment

(GSE) at PT. Gapura Angkasa Makassar

	(
Component Name	Severity (S)	Occurrence (O)	Detection (D)	R P N (SxOxD)	Risk Level	R
Chassis Assembly and Tire	6	5	2	60	Low	
Electrical System Assembly	8	4	3	96	Medium	
Steering Column	8	5	4	160	High	
Open Style Cab	2	7	2	28	Low	
Hydraulic System Assembly	4	5	5	100	Medium	
Front Lifting Bracket Assembly	4	8	1	32	Low	
Rear Lifting Bracket	4	6	4	96	Medium	
Assembly						
Anti-Slip Sticker	3	4	2	24	Low	
Belt Bracket Assembly	6	6	1	36	Low	
Cover Weldment	2	5	3	30	Low	
Source: Primary Data	2022			I		

Source: Primary Data, 2022.

4. Discussion

There are several causes of failure in the workplace, ranging from low failure modes to high hazards which have been calculated with risk priority numbers [12] Failure can be avoided when the risk factors are properly and thoroughly identified through unsafe acts and conditions [13] Based on the results of interviews with the GSE operator supervisors and mechanics up to SSQ, who are responsible for local

ISSN: 0005-2523 Volume 63, Issue 01, January, 2023

safety, it was discovered that the damage to the equipment was due to several factors, such as workers' hastiness and carelessness. Other factors include environmental factors such as lack of equipment maintenance and road conditions. Furthermore, BTT has 17 main components, while BCL has 10. The BTT is used to transport passengers' luggage from or to the plane and serves as a towing or coupling vehicle for other GSE equipment such as Baggage Cart, Cargo Dolly, and GPU.

The BTT Failure Mode with the highest RPN value was the Indicator Engine component with a value of 240, indicating that it had a very high risk. The high category ranged from 168-192 and included indicator plates, lamps, and air conditioners. Furthermore, the low category ranged from 15-75, consisting of frames and tires, doors and hinges, heard guards and accessories, steel cabins, front glass, and door locks. It also included wiring and clamps, lamp brackets, meters and switches, wiper motors, and blade and defroster. The very low category had a range of 4-8, consisting of instrument panels and floors, and driving seats.

The Failure Mode with the BCL type with the highest RPN was the Steering Column with a value of 160, placing the system in the high category based on the RPN ranking. The Medium category ranged from 96-100 and comprised an electrical, a rear, and a hydraulic systems assembly. Furthermore, the low category of the RPN ranged from 24-60, consisting of chassis assembly and tire, open style cab, front lifting bracket assembly, anti-slip sticker, belt bracket assembly, and cover weldment.

5. Conclusions and Recommendations

Based on this research, the failure modes with the highest risk were the BTT indicator engine component and the BCL steering column, with RPN values of 240 and 160, respectively. According to the RPN ranking, these systems were included in the high-risk category. It is recommended that supervision from manpower and SSQ workers should be carried out routinely and on a scale because several incidents of equipment damage caused by GSE operators can result in work accidents for operators and their surroundings. Furthermore, components with a high probability value need routine maintenance to increase their reliability, while those with high RPN levels require more attention.

6. Acknowledgment

This article is part of the thesis for the magister program on public health science. The authors extend their biggest gratitude to all parties who were involved and helped throughout the process of this research.

7. References

[1] Lalu M. Saleh, et al. Faktor Risiko Kejadian Penurunan Ambang Dengar Pada Karyawan Bagian Proces Plant PT. Inco Soroako. Jurnal MKMI. 2010: Vol. 6 (2), pp. 96-101.

[2] Sinaga, et al. Identifikasi Dan Analisa Risiko Kecelakaan Kerja Dengan Metode FMEA (Failure Mode And Effect Analysis) Dan FTA (Fault Tree Analysis) Di Proyek Jalan Tol Surabaya – Mojokerto. Jurnal Teknik Pomits. 2014; Vol 1(1).

[3] Susilo, et al. Analisis Kegagalan Operasional Mesin Chiller dengan Metoda FTA dan FMEA. Jurnal UM Palembang. 2019; Vol 2(3): 19-29..

[4] Kartika, Windhi, et al. Usulan Perbaikan Produk Cacat Menggunakan Metode Fault Mode and Effect Analysis Dan Fault Tree Analysis Pada PT. Sygma Examedia Arkanleema. Jurnal Online Institut Teknologi Nasional. 2016; Vol 1(4): 2338-5081.

[5] Sugiyono. Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta; 2014.

[6] Fikra Wahyuni, Gambaran Pengetahuan Sikap dan Tindakan Tentang Penggunaan Alat pelindung Diri pada Pekerja di Bagian Apron di PT. Gapura Angkasa Bandar Udara Sultan Hassanudin Makassar. 2019.

[7] Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 174 Tahun 2015 Tentang Pembatasan Usia Peralatan Penunjang Pelayanan Darat Pesawat Udara (Ground Support Equipment/GSE) Dan Kendaraan Operasional Yang Beroperasi Di Sisi Udara. Jakarta; 2015.

[8] Pariaji, Danang. B. Pengenalan Umum GSE (Ground Support Equipment). Ilmu Terbang. 2017.

[9] Paciarotti. C., Mazzuto. G., D'Errotte. D. Quality Paper A Revised FMEA Application To The Quality Control Management. International Journal of Quality dan Reliability Management. 2014; Vol.31 No.7.

[10] Nasution, S. Metode Penelitian Naturalistik Kualitatif. Bandung: Tarsito; 2003.

[11] Moloeng, Lexy J. Metode Penelitian Kualitatif. Bandung: Rosda; 2004.

[12] Stamatis, D. H. Failure Mode and Effect Analysis: FMEA from Theory to Execution. New York: ASQC Press; 1995.

[13] Tejaskumar S, Parsana, dan Patel M T. A Case Study: A Process FMEA Tool To Enhace Quality And Efficiency Of Manufacturing Industry. Bonfring International Journal of Industrial Engineering and Management Science. 2014; Vol 4(3): 145-152.